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PERIODIC SOLUTIONS OF SYSTEMS WITH GYROSCOPIC FORCES* 

S.V. BOLOTIN 

The lower limit for the number of periodic solutions of the equations of motion of a 
material point in n-dimensional Euclidean space under the effect of potential and gyroscopic 
forces is proved. 

We consider a system with the gyroscopic forces /l/ 

(A (t) 2')' = rz + Ux (t, t). z E En (4) 

whereA (t)is a symmetric positive-definite matrix, ts-periodically continuously dependent on 
time, ,JJ is a constant skew-symmetric matrix of the gyroscopic forces, and the potential u 
depends 2n-periodically continuously on time, has continuous second derivatives with respect 
to the space variables and is periodic in them, for example 

U (I + k, t) E U (a+:) (2) 

for all integer vectors kEZCR”. 

Theorem. If the system 
(A (t) 0')' = I'+' (3) 

has no non-constant Zn-periodic solutions, then system (1) has no less than n-l-1 different 
Zs-periodic solutions, and when multiplicity is taken into account, no less than 2". Solutions 
differing by a shift in the period of the potential are considered to be identical. 

The conditions of the theorem mean that A (t)z’ -r+ has no Floquet multipliers equal to 
one. If the potential U is small, then the assertion of the theorem can be obtained by 
methods of Poincare perturbation theory. 

System (1) is Lagrangian with the Lagrange function 

L (r, a?, t) = I/, (A (t) z’, 2’) + I/, (W. =) + u h t) (4) 

We will seek Zn-periodic solutions of system (1) as critical points of the Hamilton 
action functional 

*Prikl.Matem.Mekhan.,51,4,686-688,1987 
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F(r)= yL(+), 3’ (6), f) df (5) 
0 

in the sat of %x-periodic curves tH5(OERn. The domain of definition of the functional (5) 
will be refined later. 

If there are no gyroscopic forces , function (4) is periodic in the space variables, 
function (5) is defined in a set of curves on the n-dimensional torus Tn* Rn/Zn and the 
assertion of the theorem results from the results of the calculus of variations (Morse's 
theory). In the general case, functional (5) has no lower limit so that the ordinary Morse 
theory is not applicable. An analogue to Morse's theory 121 has been developed for unbounded 
and multivalued functionals, however, the results of /2/ are inapplicable in this case since 
the constant curves are not local minimum points of the functional (5). The proof of the 
theorem is based on the ideas in /3/. 

Let H be a Hilbert space of 2n-periodic functions t++z(t)~R~ with components of the 
class La and the scalar product 

Let XCH be the domain of definition of the linear selfadjoint operator A corresponding 
to system (3) 

(A+) (t) = -(A (f) 2. (Q)' + Ys' (t) (6) 
i.e., the set z~H is such that ALEX. The set X has the structure of a Hilbert space, 
copact in X, the imbetiding XCH is completely continuous, and (5) defines a functional of 
the class 0 

P (s) = x/s<As,z) + 0 (zf (7) 
in X, where 

G (I) = p rr(z(1), 1)dl (8) 
0 

is a functional of class 0 in X. The critical points of functional (7) are in one-to-one 
correspondence with the &-periodic solutions of the system (1). 

We represent the argument ZE X of the functional (7) in the form I= 3-F %, where ~EJ?* 
is the mean value of z and % is an element of the set XOCX of functions with zero mean. 
In the new f. % variables 

F(z) = F (r, %) = 'In(A%, %,-I- G (r + %) (9) 
By virtue of (2), (8) and (9)) we have 

F (2+ k, %) E F (f, %) WI 
for all k=Z". Consequently, (9) defines a functional of class @on TRx Xg, where T"= R"P' 
is an n-dimensional torus. By the condition of the theorem , the kernel of the operator (6) 
consists of the set of constant functions PCX such that the quadratic form in (9) is non- 
degenerate. 

We reduce the search for critical points of the functional (9) to an investigation of 
functions of a finite number of variables by the Lyapunov-Shmidt method. We select 

According to the Sturm-Liouville theorem /4/, the selfadjoint operator A has a compact 
resolvent and its purely real point spectrum has no accumulation points except -I- co. Let y be 
the orthoaonal projection of the vector +eH on the subspace YCff corresponding to the 
part of the spectrum of the operator A lying in [a, + co) and s the projection on 
subspace ZCR. The subspaces Y and 2 are invariant with respect to&, where Z 
dimensional. The operator A IY has the compact inverse ,A-': Y-X ~?.8f. where 
for all yEY. In the new ~,r variables formula (7) becomes 

F (2) = F. (I + z) = "/s<Ali, II> + +',<A& P> + c; (II + 4 

the additional 
is finite- 

!I A-‘# II 6 cc1 U-E R 

The critical points of the functional F are determined from the equations 

V,F(yf z) - 0, v, F (!/ + 2) = 0 

The first of Eqs.(13) is equivalent to the equation 

#+ A" V,C(gf z)= 0 

By virtue of (II), it follows from the theorem on implicit functions or the principle 
of compressed mappings that (14) has the unique solution I/= h(r), where h: Z-X isafunction 
of class 0. We set f(z)= F(h(z)+ 2). By construction, f is a function of class P in the finite- 
dimensional space Z and its critical points are in one-to-one correspondence with the critical 
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points of the functional P. 
By virtue of (10) the function f defines a function of the class 0 on T" X 20, where 2, 

is a set of functions from 2 with zero mean. According to (121, setting I= Zi- t. we have 

f 6, 5) = ‘/,<At, P> t g @, Cl; f o- 2-r 6 E Z, 

where <AC, f) is a non-degenerate quadratic form on Z,= RN, and the partial derivatives of 
the function g are bounded for II 5ll--. From this and the results in /3/ the assertion of the 
theorem follows. 

The theorem can be extended to the case when the potential U is invariant relative to 
any crystallographic group G of transformations of the space Rn. In this case, 2" must be 
replaced by G in the proof, and the Lyusternik-Shnirel'man category of the space R*/G is the 
lower bound of the number of periodic solutions. 
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ON TRANSONI~ EXTENSIONS* 

A.L. BREZENEV and I.A. CBERNOV 

The problem of finding the particular solutions of the linearized inhomogeneous transonic 
equations appearing in the transonic expansions s expressed explicitly in terms of the funda- 
mental solution of the Eerman-Fal'kovich fEFt equation, is discussed. 

When the procedure of transonic expansion is used, e.g. in the thin-body theory /l/, the 
solutions of the equations of gas dynamics have the form of series in powers of a small par- 
ameter characterizing the measure of the deviation of the flow in question from homogeneous 
sonic, oranearly sonic flow. To a first approximation, the non-linear EF equation has to be 
solved 12, 3/, and inhomogeneous linearized EF equations whose rig&c-hand sides depend on the 
preceding terms are obtained for the higher-order approximations. It is convenient to have 
available an explicit expression for the particular solutions written in terms of the funda- 
mental solut$on. Thus in /4/ two examples are given of determining the first correction in 
the theory of small perturbations for the axisymmetric flows of a compressible fluid when the 
correction is expressed in terms of the fundamental solution without taking into account its 
specific structure, and the uniqueness of such results is noted. The first-order correction 
to the solution of the RF equation was obtained in /5/. 

In the case of plane parallel flow the RF equation reduces, in the hodograph plane, to 
the linear Tricomi equation t and the procedure of transonic expansion enables one, as was 
shown in /6, 7/, to determine particular solutions for any order of approximation. From this 
it follows that when transonic expansions are used, particular solutions of a general type can 
be obtained in the physical plane for the i-th approximation. The present communication does 
not demonstrate the procedure of passing from the hodograph expansions to expansions in the 
physical plane, but gives the following straightforward result: the first correction which is 
the same as that obtained in /5/, and the second correction. The facttbatcurvflinearfntegrals 
appear in the second correction but not in the first, is of interest. 

In the case of an axisymmetric flow the first correction to the solution of the EF 
equation has the same form as in the plane parallel case. However, attempts, using the analog'y 
with the plane-parallel case, to find the second correction in general form, have proved 
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